
LECTURE 37 THE FUNDAMENTAL THEOREM OF CALCULUS

Average Value of A Function

We �rst show some examples about average values of functions. In layman's term, recall that the classical
mean value theorem states that your average speed must be achieved at least one time during your trip.
Now, remember, average speed has unit length/time, and the classical mean value theorem is drawing a
parallel between two speeds, one average, one instantaneous.

Can we, however, say a similar statement about a quantity that involves length only, say, displacement?
Suppose x (t) meausures displacement at time t, and we travel from t = a to t = b. We would have achieved
some average displacement, given by de�nition,

ave displacement =
1

b− a

∫ b

a

x (t) dt.

Does it make sense that this average displacement is in fact achieved by some the displacement at some
particular time, say, x (c) for c ∈ [a, b]? In other words, your average value of a function f (x) is a number
J , and thus has a graph of a �at line g (x) = J . Will this line intersect f (x)? Let's draw a picture.

Theorem. (Mean Value Theorem for De�nite Integrals) If f is a continuous function, then at some point
c ∈ [a, b], we have

f (c) =
1

b− a

∫ b

a

f (x) dx.

Remark. The hypothesis that f is continuous is very important. A discontinuous function need not assume
its average value. Consider

f (x) =

{
0, 0 ≤ x ≤ 1,

1, 1 < x ≤ 2,

which clearly has an average value of 1
2 , yet this number is never achieved by any function values.

HW: Compute the following de�nite integrals using the de�nition of a Riemann sum and then take a
limit as n→∞ where n is the number of subintervals. Use whichever endpoint rule you want.

(1) ∫ b

a

cdx

where c is a constant. This problem does not need a Rieman sum. It's simple geometry.
(2) ∫ b

a

xdx.

For this, you also don't need Riemann sum but simple geometry. But feel free to con�rm using a
Riemann sum.

(3) ∫ b

a

x2dx.

(4) Together using 1-3, can you express∫ b

a

(
c1x

2 + c2x+ c3
)
dx

in terms of a, b, c1, c2 and c3?
(5) Con�rm that the function f (x) = 9x2 − 16x + 4 does achieve its average value on [0, 2] via the

following steps:
1
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(a) Compute the average value of f (x) via

fave =
1

2− 0

∫ 2

0

f (x) dx

using part 4.
(b) Use intermediate value theorem to con�rm that f (c) = fave for some number c ∈ [0, 2], at least

once.

The Fundamental Theorem of Calculus Part I

Last lecture, we de�ned the de�nite integral ∫ b

a

f (x) dx

as the limit value of the Riemann sum,

J = lim
‖P‖→0

n∑
k=1

f (ck) ∆xk

where ‖P‖ = maxk (∆xk) , the maximal subinterval length. However, we did NOT study how to evaluate

a de�nite integral given f (x) and [a, b]. We do not have a systematic way of computing
∫ b
a
f (x) dx other

than computing the limiting value of a Riemann sum. In this section, we provide a powerful tool that links
between de�nite integrals and antiderivatives. The argument relies on a beautiful visualisation of the de�nite
integral.

Consider the function F (x) de�ned by

F (x) =

∫ x

a

f (t) dt,

that is, F (x) is the area under f (t) from a to x, where f (t) is a continuous function. Note that now we can
toggle x, which e�ectively changes the value of F by obtaining a di�erent area under f (t).

Remark. Question: Why such a contrived form of F (x)? Why do we even care?
Answer: If we know the function form of F (x) given f (t), then we know the area

∫ x
a
f (t) dt for any x

without computing Riemann sums.

Remark. Question: If F (x) a di�erentiable function? Why do we care about whether F is a di�erentiable
or not?

Answer: We check the limit of the di�erence quotient, that is,

lim
h→0

F (x+ h)− F (x)

h
.

Since we want the function form of F (x), it would be nice to know its slope information. If it is di�erentiable,
then we can nail down F ′ (x) for every x and thus F (x) is merely one of its antiderivative. We can then also
relate F ′ (x) to the integrand f (t) (in a way we are yet to see until we compute it).

We go on to compute each quantity in the di�erence quotient.

F (x+ h) =

∫ x+h

a

f (t) dt

F (x) =

∫ x

a

f (t) dt

Thus, using the property of the de�nite integral (you can patch things up, see Property 4 from last lecture
note),

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

∫ x+h
a

f (t) dt−
∫ x
a
f (t) dt

h

Property 4
= lim

h→0

1

h

∫ x+h

x

f (t) dt
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Now, suppose h is really really small (since it is going to 0 anyways), then how do we picture
∫ x+h
x

f (t) dt?
It is a thin strip of a rectangle, with side length h and height f (x). In addition to the heuristics, we can
use the Mean Value Theorem for de�nite integrals here (check the hypothesis, we have a = x, b = x+ h and
f (t) is continuous). There must exist some number c ∈ [x, x+ h] such that

f (c) =
1

h

∫ x+h

x

f (t) dt.

Now, we have

lim
h→0

F (x+ h)− F (x)

h
= lim
h→0

f (c) .

Here is where the continuity of f comes in. As we shrink h→ 0, we are shrinking the interval [x, x+ h] into
a singleton x. Therefore,

lim
h→0

f (c) = f (x) ,

via the continuity of f (the limit of a function equals its function value). Therefore, the limit

lim
h→0

F (x+ h)− F (x)

h
= f (x)

exists, and by de�nition of the derivative, the LHS is F ′ (x). Altogether, we have proved

F ′ (x) =
d

dx

∫ x

a

f (t) dt = f (x) .

This is to say that F is an antiderivative of f .

The Fundamental Theorem of Calculus Part II

Now, you may say, cool, we just de�ned a new function F (x) =
∫ x
a
f (t) dt and we found out F is the

antiderivative of f . So what? Is it going to help me evaluate de�nite integrals with a less messy method
than doing Riemann sums? Yes.

First, remember that the antiderivative of a continuous function f (x) is NOT unique. That is, if F (x)
is a known antiderivative, then so is G (x) = F (x) +C. Suppose now we have two candidate antiderivatives
F and G de�ned as above. Let's compute

G (b)−G (a) = F (b) + C − F (a)− C
= F (b)− F (a)

=

∫ b

a

f (t) dt−
∫ a

a

f (t) dt

=

∫ b

a

f (t) dt

What we found here is that the de�nite integral ∫ b

a

f (t) dt

only depends on the value di�erence of one antiderivative. This means, as long as you �nd any antiderivative
G (x), you evaluate G (b)−G (a) and this di�erence gives you the de�nite integral. No more Riemann sums.
We sometimes write

G (b)−G (a) = [G (x)]
x=b
x=a

or

G (b)−G (a) = G (x) |x=bx=a= G (x) |ba .

Example. Compute the following de�nite integrals:

(1)
∫ π
0

sin (x) dx = [− cos (x)]
π
0 = − cos (π)− (− cos (0)) = 1− (−1) = 2.

(2)
∫ 4

1

(
3
2

√
x− 4

x2

)
dx = 3

2

∫ 4

1
x

1
2 dx−4

∫ 4

1
x−2dx = 3

2

[
2
3x

3
2

]4
1
−4

[
−x−1

]4
1

=
[
4

3
2 − 1

]
−4
[
− 1

4 − (−1)
]

=

7− 4 · 34 = 4.
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Remark. It is absolutely crucial that you understand how integrals, derivatives and antiderivatives are related,
and it is NOT obvious. The essence of their relationship is based on limits �rst, then some properties of the
de�nite integral, and lastly, some properties of antiderivatives.

Corollary.

F (b)− F (a) =

∫ b

a

F ′ (x) dx

which tells us the net change in a di�erentiable function F (x) over an interval a ≤ x ≤ b is the integral of
its rate of change.


